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Theoretical analysis of the flow regimes and their characteristics in
vertically flowing gas–solids suspensions
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Abstract

This paper analyses the detailed flow structure characteristics of a vertical, fully developed gas–solids suspension. It is based on
an asymptotic approach to general multiphase flow equations, in the range of low or moderate solids concentrations. Three distinct flow
structures are identified, defining the Similar Profiles, Transition and Dense Phase Flow Regimes, as well as the local mechanism generating
the transitions. The predicted properties of the trends of variation of local flow variables, with overall solids loading are, then, compared
with existing experimental data. The observed wide agreement encourages the use of the theory for the interpretation and the prediction of
the behavior of existing industrial units.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The vertical flow of gas–solids suspensions is relevant for
many industrial applications such as pneumatic transport,
Circulating Fluidized Bed (CFB) or Downer reactors. Espe-
cially for the operation of chemical reactors, the hydrody-
namic characteristics of the flow are of crucial importance
since, the coming into contact of the phases which controls
reaction rate is completely dependent on the flow structure of
the gas–solids mixture. The flow structure, in turn, is deter-
mined by the operating variables of the installation. There-
fore, the relationship between operating variables and the
resulting flow structure is a central requirement for proper
plant operation.

Besides, the flow regime concept is more or less implic-
itly associated with an identified flow structure, the charac-
teristics of which remain invariant over a more or less wide
range of operating parameters. Consequently, there is a long
lasting concern for predicting fluidization regimes and clas-
sifying them in terms of particle properties and operating
parameter ranges. This preoccupation is traceable through
scientific and technical literature, with several regime di-
agrams published, e.g., by Zenz[1], Reh [2], Yerushalmi
et al.[3], Matsen[4], Grace[5], Mok et al.[6,7]. Unlike the
latter, the first five diagrams allow the determination of the
conditions under which a given gas–particle system can be
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expected to provide, e.g., a CFB-type flow regime. On the
contrary, Mok attempted a classification of CFB-type flow
regimes in terms of gas velocity and particle loading ranges,
for a given gas–solids system and a given installation.

Thus, the prediction of flow regimes also requires the pre-
liminary identification of the relevant operating variables,
which determine the flow characteristics. Especially for the
CFB, which has been approached either through high veloc-
ity fluidization or pneumatic transport, the question required
clarification. In a recent paper Berruti et al.[8] examined
the effect of the operating principle of each particular CFB
installation on the hydrodynamic characteristics of the flow
in the riser. They distinguished between Variable Inventory
Systems (VIS) and Fixed Inventory Systems (FIS). Roughly
speaking, in the latter case, the overall solids inventory is an
operating variable of the process, together with gas velocity,
while, in VIS-type operation, the operating parameters are
gas velocity and solids circulation rate (or, solids loading of
riser flow).

This work is devoted to a detailed theoretical analysis
of the flow structures and flow regimes expected to occur
in a vertical, fully developed suspension flow, at a constant
gas superficial velocity, when the solids loading is var-
ied, regardless of the means (varying solids inventory or,
circulation rate) used to adjust solids concentration. Fully
developed flow and its characteristics are relevant for con-
stant cross-section risers or downers and even, for their flow
development sections, as it has been recently illustrated by
Motte [9].
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Nomenclature

A cross-sectional area of the riser (m2)
Bij gas velocity cofluctuations tensor (m2/s2)
F gas–solids interaction force (N/m3)
g acceleration of gravity (m/s2)
p local gas pressure
r radial distance to riser centerline (m)
sij intergranular stress tensor (Pa)
U gas velocity (m/s)
V solids velocity (m/s)
x axial coordinate (m)

Greek letters
α phase presence probability (–)
βij solids velocity cofluctuations tensor (m2/s2)
φs solids axial mass flux (kg/m2 s)
ρ phase density (kg/m3)
σij solids stress tensor (Pa)
τij gas viscous stress tensor (Pa)

Subscripts and superscripts
D Dense Phase Flow Regime
f the fluid phase
i, j tensor notation
K intervalK
R reference flow variables
s the solids phase
T the Transition Regime
X̄ (overbar) indicates cross-sectional averages
∗ critical conditions
0 unladen gas flow variables
1 the Similar Profiles Regime

The analysis is based on an asymptotic approach of the
General equations governing the flow of gas–solids mixtures
[10,11], following the method initiated in a previous paper
[10,12]. Its main objective is to provide a rigorous theoretical
background to a series of experimental investigations, which
already identified flow regimes and flow structure character-
istics, in order to be able to interpret and generalize exper-
imental findings. For this purpose, a general discussion of
these findings with the help of theoretical results will take
place in the last section of the paper.

2. General analysis

2.1. General equations for fully developed flow

General probabilistic multiphase flow equations[10,11]
provide a rigorous basis for the analysis of gas–solids
flow. They have been derived from first principles, tak-
ing into account the intrinsic stochastic nature of the flow
of multiphase mixtures, and using an ensemble averaging

technique. These Eulerian equations are labeled in terms of
local and instantaneousphase mean variablesdefined as the
probabilistic means (i.e., expected values) of the immediate
Eulerian variables of each phase. An equivalence theorem
enables the direct identification of each phase mean variable
with the corresponding physically measurable quantity.

For a gas–solids mixture, when all the particles making
up the solids exhibit the same density, the flow can be con-
sidered as a two-phase flow[11] which is governed by two
Continuity Equations (one for each phase) and six Momen-
tum Equations. In the case of a fully developed flow of a
gas–solids suspension in a circular pipe, it can be shown,
with the help of the Continuity Equations, that the velocity
fields are strictly axial for each phase[10,11]. In addition, all
the variables in the Momentum Equations, except pressure,
only depend upon the radial coordinater. Consequently, for
the fluid phase, for instance, the axial projection of the Mo-
mentum Equation simplifies as follows:

1

r

d

dr
(rαfρfBrx) = −αfρfg− αf

∂p

∂x
− Fx + 1

r

d

dr
(rαf τrx)

(1)

The LHS of this equation contains the remainder of the in-
ertia forces, where,Brx denotes shear component of the ve-
locity cofluctuations tensor (−ρBij identifies with Reynolds
turbulent stresses in one-phase fluid flow). The RHS ac-
counts for the external forces, respectively, gravity, pressure
forces, gas–solids interaction (Fx) and viscous stresses (τrx).
Finally, αf denotes the local probability of presence of the
fluid.

The analogous equation for the solids, simplifies as fol-
lows:

1

r

d

dr
(rαsρsβrx)

= −αsρsg− αs
∂p

∂x
+ Fx + 1

r

d

dr
[r(αsσrx + srx)] (2)

Most of the terms in this equation are similar to correspond-
ing ones inEq. (1). Two particularities, however, should be
noted. The effect of average gas pressure on particles takes
the particular form shown here, only in the case of a fully
developed flow[10]. Besides, the last term, in the RHS of
Eq. (2) exhibits two different stress tensors;σrx accounts
for surface forces acting continuously in time and linked
by the fluid, while,srx generally known as the intergranu-
lar stress, contains the effect of direct contacts (here, mainly
collisions) with other surfaces, i.e., particles and walls.

In addition to the axial pressure gradient and the
gas–solids interaction force, these two equations are cou-
pled by the phases complementarity equation:

αf + αs = 1 (3)

whereαs represents the local solids presence probability,
which can be identified with solids volumetric concentration
(i.e., solids volume fraction).
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Simplifications introduced in the General equations in or-
der to deriveEqs. (1) and (2)are only based on the fully
developed flow hypothesis and, therefore, are completely
rigorous. However, there is an obvious closure problem re-
lated with these equations. Indeed, these equations cannot
be solved until additional equations are derived in order to
expressBrx, βrx, Fx, τrx, σrx andsrx in terms of basic vari-
ables such as phases velocities and concentrations. Rigor-
ously modeling so many terms to derive the required number
of closure equations will probably not be possible for sev-
eral decades, despite numerous attempts which can already
be found in literature (e.g.[13,14]). In order to avoid this
closure problem, solvingEqs. (1)–(3)will not be attempted
in this work. Rather, the previously developed asymptotic
approach[12] will be used to analyze the flow structure
problem.

Finally, the analysis to be developed hereafter is an
asymptotic one, limited to the cases where the average solids
concentration remains low. This average concentration is
defined as the cross-sectional average ofαs:

ᾱs = 1

A

∫
A

αs dA (4)

Adding throughEqs. (1) and (2)eliminates the gas–solids
interaction forceFx. Then, usingEq. (3), one obtains

1

r

d

dr
[r(ρfαfBrx + ρsαsβrx)]

= −(ρfαf + ρsαs)g− ∂p

∂x
+ 1

r

d

dr
[r(αf τrx + αsσrx + srx)]

(5)

In addition, it can be showed that[10] the axial pressure
gradient is uniform throughout the suspension, i.e., it is
independent of bothx and r in fully developed flow. Inte-
gratingEq. (5)over the cross-section leads to

−∂p
∂x

= ρfg+ (ρs − ρf )gᾱs − 2

R
(αf τrx + srx)w (6)

where the last term in the RHS is evaluated at the wall.

2.2. The general asymptotic approach

The asymptotic approach is based on four assumptions:

(a) In the studied flow regimes, the average solids volumet-
ric concentrations remain low enough such that, one can
considerᾱs � 1.

(b) In this range, all phase mean variables arecontinuous
functionsof the average concentration.

(c) In addition, within this range, at least limited intervals
exist in which, all phase mean variables arecontinuously
differentiable functionsof the average concentration.

(d) Local solids concentrationαs(r) is a monotonically in-
creasing function of average concentrationᾱs.

Besides, there is an implicit assumption related with the
phase mean variables in the General equations, according

to which, these variables can be considered as continuously
differentiable functions of time and space coordinates, es-
pecially, in this case, with respect to the radial coordinate
r. Assumption (a), together with the fully developed flow
requirement, limits the range of validity of the theory, typi-
cally, to CFB risers. Indeed, in the practical operating con-
ditions of this process, average solids concentrations seldom
exceed 10% in volume. Assumptions (b) and (c) general-
ize an experimentally established fact, at least for variables
such as local particle mass fluxes and axial pressure gradi-
ent. On the contrary, assumption (d) is a fully theoretical
hypothesis. It can only be supported by the fact that no con-
trary experimental evidence has been found to date. Finally,
throughout this analysis, the superficial gas velocity is as-
sumed to remain constant, as well as, the composition of the
circulating solids; the only operating parameter to be varied
is the solids loading of the flow characterized by the average
solids concentration̄αs.

Let us now consider an average concentration interval re-
ferred to asK. Within this interval,reference flow conditions
will be defined by an average concentrationᾱR

s . Provided
that, assumption (c) is valid over intervalK, any generic fluid
phase variableαfψf evaluated for an average concentration
ᾱs, can be expressed using a Taylor series development such
as

αfψf = (αfψf )
R + (ᾱs − ᾱR

s )ψ
K
f + O(ᾱ2

s) (7)

where the first term on the RHS representsαfψf evaluated
under reference flow conditions. The second term is the first
order term of the development; therefore,ψKf which is a
function of r depends on the superficial gas velocity, but
is independent of̄αs. Finally, O(ᾱ2

s) represents second and
higher order terms, which can be neglected according to
assumption (a). Similarly, for any solids phase variable one
obtains

αsψs = (αsψs)
R + (ᾱs − ᾱR

s )ψ
K
s + O(ᾱ2

s) (8)

and especially, for local particle concentration

αs(r) = (αs)
R + (ᾱs − ᾱR

s )f
K(r)+ O(ᾱ2

s) (9)

The corresponding development of the local probability of
presence of the fluidαf can be deduced fromEqs. (9) and
(3). In addition to the local phase presence probabilities and
generic phase variables, the Momentum Equations contain
three other terms: the gas–solids interaction force, the inter-
granular shear stress and the pressure gradient. These terms
can also be developed in Taylor series over the same average
concentration interval as

Fx = (Fx)R + (ᾱs − ᾱR
s )F

K
x + O(ᾱ2

s) (10)

srx = (srx)R + (ᾱs − ᾱR
s )s

K
rx + O(ᾱ2

s) (11)

−∂p
∂x

= (G)R + (ᾱs − ᾱR
s )G

K + O(ᾱ2
s) (12)

In all these Taylor series developments, the coefficients of
the first order terms identified with aK superscript, are
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independent of̄αs and, therefore, areinvariant functions of
r (exceptGK which is a constant)over the average concen-
tration interval K. These functions depend, however, on the
superficial gas velocity. Insofar as second and higher order
terms can be neglected according to assumption (a), they
represent the rate of variation of corresponding local vari-
ables with the solids loading of the suspension measured by
the average particle concentrationᾱs.

Let us now, substitute for these truncated developments
into the Momentum Equations (1), (2) and (5); subtracting
through the same equations expressed for reference flow
conditions, then, neglecting second and higher order terms,
and finally, dividing through by(ᾱs− ᾱR

s ) lead, respectively,
to the following forms:

1

r

d

dr
(rρfB

K
rx)= fKρfg− fK(G)R + (αf )

RGK

−FKx + 1

r

d

dr
(rτKrx) (13)

1

r

d

dr
(rρsβ

K
rx)= −fKρsg+ fK(G)R + (αs)

RGK

+FKx + 1

r

d

dr
[r(σKrx + sKrx)] (14)

1

r

d

dr
[r(ρfB

K
rx + ρsβ

K
rx)]

= −fK(ρs − ρf )g+GK+1

r

d

dr
[r(τKrx + σKrx + sKrx)]

(15)

All the terms of these three equations are independent ofᾱs,
and both of three are valid throughout the average concentra-
tion range referred to asK. At the first glance,Eqs. (13) and
(14) depend on the reference flow conditions chosen within
the interval, through (αf )R, (αs)R and (G)R. But if we change
the value ofᾱR

s the changes undergone by these terms are
of the same relative order of magnitude as the terms already
neglected. Thus, they have to be considered as invariant over
intervalK. Consequently,Eqs. (13)–(15)are intrinsic equa-
tions for the average concentration range referred to asK;
they govern the radial distribution of therate of variation
functionsassociated with the local variables throughoutK.

In other words, insofar as all local variables are contin-
uously differentiable functions of average solids concentra-
tion throughout intervalK, a unique set of rate of variation
functions governed byEqs. (13)–(15), define the evolution
of local flow variables with solids loading, at a constant su-
perficial gas velocity, throughoutK. This is typically the kind
of situation allowing to refer to intervalK as harboring a
consistentflow regime. Therefore,the asymptotic approach
provides a criterionto decide if any range of solids loading
can be considered as a specific flow regime for a fully de-
veloped gas–solids suspension. As the scope of this analysis
is limited to fully developed suspension flow with moderate
solids concentration as required by assumption (a), the only
criterion is the validity of assumption (c).

3. The Similar Profiles Regime

3.1. Dilute phase flow

Let us now consider the range of very low solids loadings.
Starting with a dilute suspension and progressively reducing
solids loading to zero such thatᾱs tends toward zero, while
the superficial gas velocity is maintained constant, will lead
to an unladen fluid flow. Indeed, as the localαs is necessarily
positive or zero,̄αs → 0 will result in αs(r)≡0 throughout
the cross-section. Besides, according to assumption (b), all
local fluid phase variables will tend toward their expressions
for the unladen gas flow, while, solids phase variables will
identically, vanish.

Consequently, ifᾱR
s = 0 is taken as the reference flow

conditions, one has

(αfψf )
R = (αfψf )

0 ≡ ψ0
f (16)

(αsψs)
R = (αsψs)

0 ≡ 0 (17)

(αs)
R = (αs)

0 ≡ 0 (18)

Eqs. (7)–(9)will then, take the following form:

αfψf = ψ0
f + ᾱsψ

1
f (19)

αsψs = ᾱsψ
1
s (20)

αs(r) = ᾱsf
1(r) (21)

where the 0 superscript is used to identify the variables of
the unladen gas flow, and where the 1 superscript indicates
the rate of variation functions associated with the local vari-
ables of the suspension, for this dilute phase flow. In these
MacLaurin series developments, second and higher order
terms have been omitted according to assumption (a). The
generic form ofEq. (19)applies to all fluid phase variables,
and also to the pressure gradient, while,Eq. (20)describes
the variations of all solids phase variables including the
gas–solids interaction forceFx and the intergranular stress
srx, as both should vanish in unladen gas flow.

Provided that an appropriate solids loading interval ex-
ists, over which local phase variables remain continuously
differentiable functions of average solids concentration,
Eqs. (19)–(21)define a flow regime expected to occur
under dilute phase flow conditions. In addition,Eqs. (20)
and (21)define the radial profiles of solids phase variables
as self-similar. Therefore, this dilute phase flow regime
has been called theSimilar Profiles Regime[10,12]. The
radial profiles of solids phase variables should keep their
self-similarity property regardless of the superficial gas ve-
locity. Nevertheless, the shape of the profiles, i.e., the rate
of variation functions such asf 1(r) andψ1

s(r) or ψ1
f (r) are

expected to change when the gas velocity is changed.
The effective existence of this Similar Profiles Regime

(SPR) has been confirmed by several experimental investiga-
tions. This will be discussed in the last section of this paper.
However, given the limited number of reliable measuring
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techniques, comparison was mainly performed for the pres-
sure drop law, average solids velocity and particle mass flux
profiles. Let us explicit the corresponding laws predicted by
this theory.

The general form of the variations of unit pressure drop
with average concentration, in the SPR, can be deduced from
Eq. (12):

−∂p
∂x

= (G)0 + ᾱsG
1 (22)

where (G)0 stands for the pressure gradient of unladen gas
flow for the same superficial velocity. Now, if we consider
local solids velocity,Eq. (20)applies withψs = Vx. Thus,
one obtains

αsVx = ᾱsV
1
x (23)

whereV 1
x is a function of radial coordinate and superficial

gas velocity, but is independent of average solids concentra-
tion. The average solids velocityV is generally defined by

ᾱsV̄ = 1

A

∫
A

αsVx dA (24)

In the SPR, it is then, equal to the cross-sectional average
of V 1

x . Given that the latter should be invariant when solids
loading changes,average solids velocity should remain con-
stantin the Similar Profiles Regime, and only depend on gas
velocity. Finally, the RHS ofEq. (23)multiplied byρs rep-
resents the local net particle mass flux in the axial direction.
The average solids mass flux is defined by

φ̄s = 1

A

∫
A

ρsαsVx dA (25)

Combining withEq. (23)leads to

φs(r) = φ̄sΛ
1(r;U) (26)

according to which, particle mass flux profiles should be
self-similar.Λ1(r;U) is a function of radial distance and
superficial gas velocity, to be determined experimentally.

Indeed, the analysis performed here can only show the
general properties of the laws governing the variations of
flow variables with solids loading, but is unable to predict
the actual shape of the radial profiles, not even as a function
of gas velocity.

3.2. The upper limit of the Similar Profiles Regime

Let us recall thatEqs. (19)–(21)are the limiting forms of
Taylor series developments, asymptotically valid asᾱs →
0. Therefore, if the solids loading of the suspension, is fur-
ther increased, the neglected second order terms are likely to
progressively change the slope of the curves describing the
variations of local variables with average concentration. Ex-
cept, if there is an upper limit to the concentration interval
over which local variables are continuously differentiable
functions ofᾱs.

In order to examine the possibility of such an upper limit,
let us now examine how local fluid phase variables are ex-
pected to change withlocal particle concentration, in di-
lute phase flow. According toEq. (19), for very low particle
loading, the fluid phase variables of the suspension depart
weakly from their values in unladen gas flow; in addition,
comparison withEq. (21)suggests that the local perturba-
tion of the unladen gas flow field isproportional to local
particle concentration:

αfψf − ψ0
f = αs

ψ1
f

f 1
= αsψ̃

1
f (27)

Now, let us consider the flow about a particle in such condi-
tions. As it is well known from one-phase fluid mechanics, it
significantly differs from “outer flow” only in a limited vol-
ume, namely, the boundary layer and the wake. Outside this
“perturbated flow volume”, local variables are essentially
equal to those of the “outer flow”. In the present case, the
axial velocity component, for instance, is essentially equal
to U0

x . Besides, in the “perturbated flow volume”, local ve-
locity depends upon the slip velocity of the particle. Let
ux denote this local velocity, on the average. Therefore, the
phase mean velocity (i.e., the expected value)Ux will be
a combination of these two contributions. In addition, ac-
cording to the similarity rules of one-phase fluid mechanics,
the “perturbated volume” is proportional to the volume of
the particle. Therefore,ux will contribute toUx in a volume
fraction equal to (kαs), while the unperturbated flow veloc-
ity will contribute in the complementary volume (1− kαs).
Thus, one has

Ux = (1 − kαs)U
0
x + kαsux (28)

From an ensemble averaging point of view, (kαs) and (1−
kαs) are the respective probabilities to find the local velocity
equal to, eitherux orU0

x . A similar expression can be found
for the velocity cofluctuations termBrx (as well as, for other
fluid phase variables); indeed, ifbrx denotes the average
cofluctuation in the “perturbated volume”, one has

Brx = (1 − kαs)B
0
rx + kαsbrx (29)

whereB0
rx represents the turbulence of unladen gas flow.

Obviously,Eqs. (28) and (29)are consistent with the general
form (27). Nevertheless, these two expressions are valid,
if and only if, kαs < 1 − αs, i.e., if the “perturbated flow
volumes” do not overlap.

Consequently, insofar asEqs. (28) and (29)can be con-
sidered as the physical justification of the general forms (27)
and (19), one should contemplate that, all these forms could
become invalid beyond a critical concentrationα∗

s defined
by

(k + 1)α∗
s = 1 (30)

Indeed, as soon asαs reaches this critical value, the rate of
variation of the fluid phase variables with local concentra-
tion is expected to change. Therefore, even ifEq. (21)de-
scribing the relationship between local concentrationαs and
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average concentration, remains valid beyondα∗
s, local fluid

phase variables are no longer continuously differentiable
functions ofᾱs over a range containingα∗

s. Consequently,
α∗

s determine the upper limit of the Similar Profiles Regime.
However, the mechanism identified as being responsible

for this upper bound is alocal one, andα∗
s is a critical value

for local concentration. When̄αs is progressively increased
from zero, the local concentration will reach its critical value
α∗

s at a radial positionr∗ in the cross-section, where particle
concentration is maximum in the Similar Profiles Regime.
According toEq. (21), this will occur for an average con-
centrationᾱ∗

s such that

α∗
s = ᾱ∗

sf
1(r∗) (31)

Therefore, in terms of average concentration, the Similar
Profiles Regime would occur in a range [0; ᾱ∗

s]. Besides,α∗
s

is determined byk which is a characteristics of the relative
flow about a particle. Thus, it mainly depends on fluid and
particle properties. But as the shape of concentration profiles
in the Similar Profile Regime is likely to depend on gas
velocity, ᾱ∗

s is expected to be a function of superficial gas
velocity.

4. The Transition Regime

4.1. Gradual transition

If the concentration profiles in the SPR were uniform
throughout the cross-section, one would haveᾱ∗

s = α∗
s. In

other words, the change fromEqs. (28) and (29)to another
set of laws of variation with local concentration, would occur
simultaneously for the whole cross-section. However, con-
centration profiles are not expected to be uniform, even in
the SPR, at least on the basis of the few available experimen-
tal results. Thus, for theaveragecritical concentration̄α∗

s,
αs(r) will be lower thanα∗

s everywhere in the cross-section
except atr = r∗. If the solids loading is gradually increased,
αs(r) will increase everywhere throughout the flow, accord-
ing to assumption (d), and the local critical conditions will
be reached and overstepped in an larger and larger part of
the cross-section. Letr∗∗ denote the radial position where
the local concentration will reach the critical valueα∗

s at the
latest, i.e., when̄αs = ᾱ∗∗

s . Then, the average concentration
range [̄α∗

s; ᾱ∗∗
s ] will correspond to the solids loading inter-

val through which local transition progressively takes place
throughout the cross-section. This range will be called the
transition range and the above interval referred to asT.

As showed above, the flow structure of the SPR cannot
hold in this range; in addition, beyond the upper bound of
interval T, a new flow regime is expected to occur, which
will be called below, the Dense Phase Flow Regime. Let us
now examine the expected properties of the flow field, in
between, i.e. over intervalT.

All along this average concentration range, the relation-
ship between local flow variables and local concentration,

will still, be described byEqs. (28) and (29)in the part of
the cross-section whereαs(r) < α

∗
s, while in the remaining

part, the magnitude of which will increase with̄αs, new
local laws will apply. Let us, respectively, call “sub-critical
flow region” and “super-critical flow region” these two
parts.

Let us denotec(r) the average concentration for which,
the local concentration at a given radial distancer reaches
the critical valueα∗

s. Thus,c(r) defines an implicit function
of r through the following equation:

αs(r; c) = α∗
s (32)

Given that,αs is assumed to be a continuous function of av-
erage concentration and a continuously differentiable func-
tion of radial distance,c(r) would be a continuous function
of r. Therefore, intervalT is a range of solids loading over
which agradual transitionoccurs: the flow structure of the
Similar Profiles Regime,progressively and continuously
changes into that of dense phase flow, as overall solids
loading is increased.

4.2. Flow structure

According to assumption (b),αs(r; ᾱs) is a continuous
function of average concentration, but not necessarily, acon-
tinuously differentiablefunction of that variable all over in-
tervalT. Nevertheless, its derivative with respect toᾱs cannot
be discontinuous throughout the interval, otherwise, assump-
tion (b) cannot remain valid. Therefore, intervalT bears only
a limited number of discrete points of discontinuity for that
derivative. It is necessarily discontinuous forᾱs = ᾱ∗

s and
ᾱs = ᾱ∗∗

s . In addition, the mechanism of progressive substi-
tution described above, which closes up the local sub-critical
flow conditions when the “perturbated flow volumes” over-
lap, suggests that such a discontinuity should also occur,
at a given radial distancer, for αs(r) = α∗

s, thus, for ᾱs
= c(r).

Therefore, let us assume that, the variations of local con-
centration with average concentration, are governed by two
different laws depending on whether local flow conditions
are sub-critical or super-critical:

α−
s (r; ᾱs) = α∗

s + [ᾱs − c(r)]f−(r;U) (33)

α+
s (r; ᾱs) = α∗

s + [ᾱs − c(r)]f+(r;U) (34)

In these equations, which express truncated Taylor series
developments, the second and higher order terms have been
neglected in accordance with assumption (a). In addition, the
(−) superscript has been used for sub-critical flow variables
while, the (+) superscript identifies the super-critical flow
variables. Local concentration is expected to be a contin-
uously differentiable function of radial distance, regardless
of overall or local flow conditions. Therefore,f−(r), f+(r)
andc(r) should be alike. In addition, the radial derivative of
αs(r) should remain continuous throughout intervalT, espe-
cially for ᾱs = c(r). According toEqs. (33) and (34), this
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radial derivative is twofold:

dα−
s

dr
= [ᾱs − c(r)] df−

dr
− f−(r)

dc

dr
(35)

dα+
s

dr
= [ᾱs − c(r)] df+

dr
− f+(r)

dc

dr
(36)

Thus, provided thatc(r) is continuously differentiable, the
continuity requirement for local critical conditions requires

f−(r;U) = f+(r;U) = fT (r;U) (37)

Consequently, comparison withEqs. (33) and (34)indicates
that, the variations of local concentration with average con-
centration are, in fact, described by auniquelaw throughout
intervalT:

αs(r; ᾱs) = (αs)
∗ + [ᾱs − ᾱ∗

s]fT (r;U) (38)

A similar mathematical argument can be developed for any
other phase mean variable, eitherαfψf or αsψs to show that
its variations with average concentration, are governed by a
unique rate of variation function, eitherψTf or ψTs all over
intervalT:

αfψf = (αfψf )
∗ + [ᾱs − ᾱ∗

s]ψTf (39)

αsψs = (αsψs)
∗ + [ᾱs − ᾱ∗

s]ψTs (40)

Again, there is a necessary condition for the validity of these
equations: the functionc(r) should be a continuously differ-
entiable function of the radial coordinate.

Eqs. (38)–(40)are of the same form as (7)–(9). Conse-
quently, they define intervalT = [ᾱ∗

s; ᾱ∗∗
s ] as a concen-

tration interval over which, the variations of the local flow
variables, with solids loading, are governed by a unique
set of asymptotic laws making up a consistent flow regime.
As this is a range over which local critical transition grad-
ually occurs throughout the cross-section, it will be called
the Transition Regime. It is characterized by affine laws of
variation (in continuity with those of the SPR) ofall local
variables with average concentration.

Indeed, for the axial pressure gradient one obtains

−∂p
∂x

= −
(
∂p

∂x

)∗
+ [ᾱs − ᾱ∗

s]GT (41)

For the axial mass flux profiles, combiningEqs. (25) and
(40) one can also find an affine law of variation:

φs(r) = (φs)
∗ + [φ̄s − φ̄∗

s]ΛT (r;U) (42)

In addition, it can be easily shown that, in the Transition
Regime, local as well as, average solids velocities become
functions of average concentration, unlike the behavior ob-
served in the SPR.

However, all these conclusions are valid only ifc(r) is
a continuously differentiable function. In order to ascertain
this property, let us note once, that the derivative ofc(r)

cannot be discontinuous throughout the cross-section. It can
only exhibit a discontinuity at a limited number of discrete

radial positions. These arer∗ and r∗∗. However, a possible
discontinuity of the derivative at these points does not inval-
idate the previous conclusions. Indeed, the continuity of the
derivative is required for the use ofEqs. (33)–(36). But for
r = r∗, sub-critical flow conditions do not exist within the
range of the Transition Regime, as for the super-critical flow
conditions atr = r∗∗, alike. Therefore, derivability at these
singular points is not required. Besides, if the existence of
other points of discontinuity is to be suspected,f−(r) and
f+(r) are expected to be different at these points. Since,
these are isolated singular points, the necessary continuity
of local concentration, as a function of radial distance, will
impose the continuity of the rate of variation functions. In
other words, ifr# denote such a radial distance, one should
have

f−(r#) = f+(r#) = fT (r#) (43)

which implies that the general conclusion summarized by
Eq. (37) remains valid even for these singular points. The
conclusions derived in this section are, therefore, valid for
the whole cross-section.

Consequently, as soon as the average concentration ex-
ceeds the critical valuēα∗

s, the Similar Profiles Regime will
end, and the Transition Regime will take place. From a prac-
tical point of view, these two regimes will be different, if and
only if, the rate of variation functions of the two regimes,
are different. To ascertain this point, let us express the local
critical concentration usingEq. (38):

α∗
s = (αs)

∗ + [c(r)− ᾱ∗
s]fT (r) (44)

α∗
s can be obtained fromEq. (21). Combining these two

equations leads to

fT (r)− f 1(r) = α∗
s − c(r)f 1(r)

c(r)− ᾱ∗
s

(45)

The numerator of the fraction in the RHS of this equation,
only vanishes forr = r∗. Therefore,fT (r) andf 1(r) are
different throughout the cross-section, except, perhaps at
r = r∗. At this particular radial position, the denominator
simultaneously vanishes; the two rate of variation functions,
thus, can be different even inr∗.

5. Dense Phase Flow Regime

Throughout the Similar Profiles Regime, solids phase
variables are governed byEqs. (20) and (21). Consequently,
local solids velocity, for instance, remains constant, at a
given radial position, and equal to the value it would assume
for an isolated particle fed into the unladen gas stream,
regardless of solids concentration. Therelativeradial distri-
bution of the particles, alike, remain unchanged throughout
the regime. In other words, on the average, the flow field
of the particles is determined by the unladen gas flow field,
while, overall particle loading, acts as a scale factor. Ac-
cording to this picture, one would expect, that the overall
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solids loading could be increased, without any change in
the properties of the particles flow field, as far as asatura-
tion would occur in terms of local particle concentration,
at least, at a particular radial position. It can be easily
imagined that such a saturation would be the maximum
concentration possible for the particles, i.e., for instance,
the packed bed or, dense phase fluidized bed concentration.

We showed that, a saturation indeed occurs, which is not
due, however, to particle packing limits but, to the effect of
the presence of the particles on gas flow field. The grad-
ual substitution, proportional to local particle concentration,
of solids-dependent flow variables, for unladen flow vari-
ables, as described byEqs. (29) and (30), imposes its in-
trinsic limit: the disappearance of any trace of unladen gas
flow structure, at a given radial position, due to the over-
lapping of “perturbated flow volumes”. As soon as the con-
ditions for such a saturation occur, at any radial position
in the cross-section, the relationship between local particle
concentration and overall solids loading happens to change.
The SPR ends up, to leave the place to the specific flow
structure of the Transition Regime.

The saturation under consideration, however, is not a con-
centration which cannot be exceeded. It only results, in
places where local saturation conditions are fulfilled, in
solids variables independent oflocal unladen gas flow vari-
ables, but determined by a solids-dependent fluid flow struc-
ture. Throughout the Transition Regime, “saturated” and
“unsaturated” flow conditions (which have been, respec-
tively, termed as super-critical and sub-critical flow condi-
tions) coexist over the cross-section. The requirements of
this coexistence, shape the flow structure of the Transition
Regime.

Obviously, beyondᾱ∗∗
s , the complete disappearance of

sub-critical flow conditions will require a new change in the
relationships between local variables and average concen-
tration. Therefore, a new flow regime will take place, which
will extend as far as these relationships can be described
by functions continuously differentiable with respect toᾱs,
i.e., unless a new type of saturation occurs. Tentatively, this
regime will called theDense Phase Flow Regime(DPR).

As far as the second and higher order terms can be ne-
glected, this regime can be characterized by truncated Taylor
series developments similar toEqs. (7)–(9):

αfψf = (αfψf )
∗∗ + [ᾱs − ᾱ∗∗

s ]ψDf (46)

αsψs = (αsψs)
∗∗ + [ᾱs − ᾱ∗∗

s ]ψDs (47)

αs(r) = (αs)
∗∗ + [ᾱs − ᾱ∗∗

s ]fD(r;U) (48)

and, in particular, for the unit pressure drop, and, the local
solids mass fluxes, respectively:

−∂p
∂x

= −
(
∂p

∂x

)∗∗
+ [ᾱs − ᾱ∗∗

s ]GD (49)

φs(r) = (φs)
∗∗ + [φ̄s − φ̄∗∗

s ]ΛD(r;U) (50)

Obviously, the DPR rate of variation functions identified
with the (D) superscript, will differ from those of the Tran-
sition Regime.

The search of the conditions under which the DPR is ex-
pected to end up, is out of the scope of this paper. The only
observation, which can be inferred, is that if, with increasing
solids loading, the second and higher order terms become
no longer negligible,Eqs. (46)–(50)will represent the ini-
tial trends of variation in the DPR, i.e., the equation of the
tangent to the plot of the corresponding curve, forᾱs = ᾱ∗∗

s .

6. Comparison with experimental results

During the last two decades, a lot of experimental work
has been devoted to investigating flow regime and flow struc-
ture characteristics in vertical fully developed flow, espe-
cially, in CFB risers. Their results will shortly be analyzed,
here in order to be compared to our theoretical predictions.

Through a careful series of experiments on dilute phase
suspensions Muzyka et al.[15,16] was the first author to
confirm that the pressure gradient of the suspension was, in-
deed, systematically described byEq. (22), as predicted for
the Similar Profiles Regime as can be seen inFig. 1. His ex-
periments have been carried out in a 20 mm ID stainless steel
pipe, using two different particle size distributions of sand
(172, 249�m) and glass beads (63�m) suspended in atmo-
spheric air. His results show the rate of variation factorG1

as being a linear function of superficial gas velocity, as can
be predicted usingEq. (6)and modeling particle-wall colli-
sions. In addition, Muzyka showed that the average solids ve-
locity is independent of solids concentration, and, is a linear
function of superficial gas velocity in the 1.5–10 m/s range.
The average slip velocity was found essentially equal to the
terminal velocity of the average particle, for the three solids.

Analyzing their average solids flux vs. average solids
concentration plots, Monceaux et al.[17,18] reported the
systematic existence of an abrupt change in the slope of the
linear trends of variation, for different levels of superficial
gas velocity (2–6 m/s), thus, suggesting a regime transi-
tion. Their experiments were carried out in a 144 mm ID
plexiglass CFB-riser column in which, 60�m FCC-catalyst
particles were suspended in atmospheric air. They observed
essentially self-similar particle mass flux profiles in the first
regime (dilute phase flow) while, the profiles deformed with
solids loading in the second regime, exhibiting a significant
downflow near the wall.

With the help of his experiments, performed in the same
installation as Muzyka, using a 210�m sand, Mok[6,7,19]
reported three flow regimes occurring, at a constant superfi-
cial gas velocity, when solids loading is gradually increased.
Fig. 2 shows forφ̄s vs. ᾱs the characteristic broken line be-
havior predicted in present work, suggesting an identifica-
tion of the three linear regression lines with the analyzed
regimes. A similar trend of variation is also exhibited by
his pressure drop vs.̄αs data in agreement withEqs. (22),
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Fig. 1. Pressure drop in dilute phase flow of vertical gas–solids suspensions after Muzyka[16]. Regression lines confirm the linear trend of variation
with average concentration̄αs at constant gas velocityU as predicted byEq. (22).

(41) and (49). In addition, the slip velocity remains invari-
ant and essentially equal to the terminal velocity of the av-
erage particle, in the first regime identifiable with the SPR.
It substantially increases with concentration in the second,
which probably corresponds to the Transition Regime, and,
essentially stabilizes in dense phase flow.

Ginestet et al.[20,21]investigating pneumatic transport in
a 31.8 mm ID pipe, either vertical, or inclined, and plotting
their data in the same way, also reported the two first regimes
with their characteristics derived here, for 186�m sand and
571�m glass beads. The critical concentrations at which
transition occurs are lower for an inclined pipe. However,
with 2–3 mm coleseed, the abrupt changes of slope are no
longer obvious; rather, a progressive sharpening of the trend
of variation is observed, e.g., in̄αs vs. φ̄s plots. This is
probably due to the second and higher order terms, which
could become non-negligible before the occurrence of the
critical conditions required for the regime transition.
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Fig. 2. Variations of average solids flux̄φs with average concentration̄αs at constant velocitiesU, after Mok[7]. Regression lines exhibit the typical broken
line behavior predicted in present work allowing flow regime identification. Dashed lines indicate the approximate bounds of the Transition Regime (TR).

Working with the same installation as Monceaux et al.
[17,18], Bodelin [22–24] showed that they missed the au-
thentic SPR which occur for 60�m FCC-catalyst particles
at average concentrations lower than about 0.2–0.4%. He
also investigated mass flux profiles for 198�m sand and
FCC-catalyst/sand mixtures. A typical plot of the trend of
variation of local particle mass fluxesφs(r) for sand, with
(ρsᾱs) at a constant gas velocity is shown inFig. 3. Regres-
sion lines are in agreement with the trend of variation pre-
dicted byEqs. (17) and (40). The same formal agreement
has been observed with mixtures of solids differing both by
their densities and their size distributions.

The same flow regimes, have been observed by Fabre
et al.[25] in a 0.8 m×1.2 m CFB-riser column operated us-
ing 260�m sand particles. These authors report, however, a
fourth linear portion in the broken line plots evoked above.
This can be interpreted as the effect of the rectangular shape
of the cross-section of the column. Indeed, as it is generally
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Fig. 3. Trend of variation of local particle mass fluxesφs(r) measured at different relative radial positionsr/R, with average mass concentration(ρsᾱs),
after Bodelin[22]. Solids: 198�m sand;U = 4.4 m/s. The dashed line indicates the onset of the Transition Regime (TR) forρsᾱs = 5.6 kg/m3.

believed, the local concentration is expected to be maxi-
mum near the wall. Therefore, local transition should firstly
occur near the wall, and then, progressively move toward
the centerline. This progression remains axisymmetrical
in a circular cross-section column, but local transition can
reach the center, faster, along the short axis, than along
the longer axis of a rectangular cross-section. Then, in
the remaining sub-critical flow region, local transition will
progress both from and toward the centerline. In addition,
this argument could explain, why the average concentration
sharply increases, in this range, for slight increments of
average solids flux.

Finally, Motte et al.[26] with the same installation as
Bodelin, confirmed the existence of the predicted flow
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Fig. 4. Trend of variation of local particle mass fluxesφs(r) measured at different relative radial positionsr/R, with average mass concentration
(ρ1ᾱ1 + ρ2ᾱ2), after Motte [9]. Solids: a mix of 30% FCC-catalyst (1200 kg/m3; 70�m) and 70% iron ore (5200 kg/m3; 83�m); U = 4.4 m/s. The
dashed lines indicate the bounds of the Transition Regime (TR).

regimes for particles mixes differing either by their size
distributions or by their densities. An illustration is shown
in Fig. 4. The three regimes can be clearly identified com-
paring the trends of variation with present predictions. The
same regimes always occur in the same order. Nevertheless,
the overall critical conditions̄α∗

s and ᾱ∗∗
s , depend on the

composition of the mixture: the finer the particles, the lower
the critical concentrations. The effect of particle density,
however, is less obvious.

Besides, the asymptotic analysis developed here, has
been extended to temperature fields, in the Similar Pro-
files Regime, by Molodtsof and Muzyka[27]. Then, an
explicit equation has been derived, for the variations of
the wall-to-suspension heat transfer coefficient with solids
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loading, which predicts all previously observed trends, and,
which has been found in excellent agreement with the heat
transfer data reported by Muzyka[16]. In addition, Bentahar
et al. [28] showed that, the sudden regime transition occur-
ring for ᾱs = ᾱ∗

s results in an abrupt change in the constants
of the heat transfer coefficient equation.

7. Conclusions

An asymptotic analysis of the requirements of the gen-
eral multiphase flow equations has been developed, for fully
developed, vertical gas–solids suspensions. From this analy-
sis the formal relationship between local flow variables and
overall solids loading has been deduced. The examination of
flow structure properties allowed the identification of three
distinct flow regimes. The mechanism governing the hydro-
dynamic effect of local particle concentration, on local fluid
phase variables, explains the regime changes, as well as the
flow structure properties. The formal and qualitative predic-
tions of this theoretical approach have been shown to be
in excellent agreement with existing experimental results.
These experimental data were obtained for particle diame-
ters ranging from 40�m to 1 mm, different solids densities,
and even, for particle mixes, in risers the cross-sectional
area of which range, from 3×10−4 to 1 m2. Typical gas ve-
locities were about 2–10 m/s. However, the analysis and its
results, are valid for low and moderate solids loadings, i.e.,
for particle concentrations typically lower than 5–10% in
volume. Consequently, the theory can be used as a general
scheme for the prediction of trends, and the interpretation
of the behavior of existing pilot-scale or even, commercial
units.
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